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Improvements in Seurat V5 (vs V4)

© Efficiency
© More integration methods

* [ntegration workflow:
Seurat v5 introduces a streamlined integration and data transfer workflows that performs integration in low-dimensional
space, and improves speed and memory efficiency. The results of integration are not identical between the two workflows,
but users can still run the v4 integration workflow in Seurat v5 if they wish.

In previous ver
the data can be
integration vig
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¢ Differential expression:

Seurat v5 now uses the presto package (from the Korunsky and Raychaudhari labs), when available, to perform differential

expression analysis. Using presto can dramatically speed up DE testing, and we encourage users to install it.

In addition, in Seurat v5 we imnlement a nseudocount (when calculating log-FC) at the eroun level instead of the cell level. As

aresult,userswill « Pseudobulk analysis:

particularly forge  Once a single-cell dataset has been analyzed to annotate cell subpopulations, pseudobulk analyses (i.e. aggregating together
McCarthyand Pa  cells within a given subpopulation and sample) can reduce noise, improve quantification of lowly expressed genes, and

reduce the size of the data matrix. In Seurat v5, we encourage the use of the AggregateExpression function to perform
pseudobulk analysis.

Check out our differential expression vignette as well as our pancreatic/healthy PBMC comparison, for examples of how to
use AggregateExpression to perform robust differential expression of scRNA-seq data from multiple different

conditions.
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Alignment with Cell Ranger
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Data import to Seurat
Load in data from 10X

Source: R/preprocessing.R

Enables easy loading of sparse data matrices provided by 10X genomics.

Read10X(
data.dir, : S
gene.column = 2, 1}brary(dp1yr)
cell.column = 1, library(Seurat)
unique.features = TRUE, library(patchwork)
strip.suffix = FALSE
) # Load the PBMC dataset
pbmc.data <- Readl0X(data.dir = "/brahms/mollag/practice/filtered_gene_bc_matrices/hg19/")
# Initialize the Seurat object with the raw (non-normalized data).
Arguments pbmc <- CreateSeuratObject(counts = pbmc.data, project = "pbmc3k", min.cells = 3, min.features =
data.dir 200)
Directory containing the matrix.mtx, genes.tsv (or features.tsv), and barcodes.tsv file pbmc
vector can be given in order to load several data directories. If a named vector is giver
prefixed with the name.

## An object of class Seurat
ge“&C?“mF ich ol . . . defaultis ## 13714 features across 2700 samples within 1 assay
pecify which column of genes.tsv or features.tsv to use for gene names; default is ## Active assay: RNA (13714 features, @ variable features)

cell.column ## 1 layer present: counts
Specify which column of barcodes.tsv to use for cell names; default is 1

unique.features
Make feature names unique (default TRUE)

strip.suffix
Remove trailing "-1" if present in all cell barcodes.
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Quality control

* Necessary to identify and filter out low quality cells, doublets, etc. Note may also be recommended to use
doublet-filtering software (e.g. DoubletFinder https://github.com/chris-mcginnis-ucsf/DoubletFinder)
* Some metrics to approximate these are:
* Number of unique genes detected per cell (low quality cells have few genes expressed, whereas
doublets may have unusually high number of genes
* Number of molecules detected within cells (similar to gene counts)

€ss

pbmc <- subset(pbmc, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)
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Doublet detection -- DoubletFinder

In Brief

scRNA-seq data interpretation is
confounded by technical artifacts known
as doublets—single-cell transcriptome
data representing more than one cell.
Moreover, scRNA-seq cellular
throughput is purposefully limited to
minimize doublet formation rates. By
identifying cells sharing expression
features with simulated doublets,
DoubletFinder detects many real
doublets and mitigates these two
limitations.

DoubletFinder Overview
(1) Simulate Doublets (2) Dimensionality Reduction (3) Doublet Identification
Droplet .
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Preprocessing: Normalization

© Data are normalized so gene expression values can be compared across cells

© Nofrmal)ized by total feature expression, multiplied by a scale factor (10,000 by
default).

pbmc <- NormalizeData(pbmc, normalization.method = "LogNormalize'", scale.factor = 10000)

© Note: SCtransform -- alternate normalization method developed by Satija lab: omits the need for
heuristic steps including pseudocount addition or log-transformation and improves common
downstream analytical tasks such as variable gene selection, dimensional reduction, and differential
expression. But unclear if compatible with Harmony, the data integration method we will use
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Preprocessing: Identify highly variable features

© Find the genes which change the most cell to cell in the dataset.

© It has been found that these highly variable genes are the most informative for downstream
analysis®
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Integration of multiple samples

Poses a challenge for single cell analysis.
Fig. 1: Overview of Harmony algorithm.

Want to keep true biological variation (between From: Fast, sensitive and accurate integration of single-cell data with Harmony
conditions/treatments etc), but remove Dataset | Cell type
sample—specific effects 000 b m 4+ / Iterate until convergence \
Harmony " oo Sl e o, | Sl . =
(https://github.com/immunogenomics/harmony): 0% ::.’” 1 LI JEL ? e iSe
o projects cells into a shared embedding in which | & == ’,’:’; S o . & J e S’ & L\
cells group by cell type rather than A wr? \ - ':':': _
dataset-specific conditions. " ;}\,&L " ‘f’j;v °0\\>:‘ :s’ 4 ‘Ooef ;’ a c}oe\j‘&ﬁ* :‘i 1
o simultaneously accounts for multiple N 3 b S Py it
experimental and biological factors. il "
O Authors demonstrate the supe rior pe rfo rmance Soft assign cells to Get cluster centroids Get dataset correction Move cells based on
. . . clusters, favoring mixed for each dataset factors for each cluster soft cluster membership
of Harmony to previously published algorithms dataset representation

while requiring fewer computational resources
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https://github.com/immunogenomics/harmony

UMAP2

Importance of proper sample integration
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Preprocessing: Data scaling

© Scaling shifts the expression of each gene so
mean=0 and variance=1. Useful so highly-expressed
genes don’t dominate in downstream analysis.

one standard
deviation

—

all.genes <- rownames(pbmc)
pbmc <- ScaleData(pbmc, features = all.genes)
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Preprocessing: Linear dimensionality reduction

© E.g. principal component analysis (PCA). By default this is computed on variable features

identified previously.

© These components will be used for downstream clustering steps.

# Examine and visualize PCA results a few different ways
print(pbmc[["pca"]], dims = 1:5, nfeatures = 5)

## PC_ 1

## Positive:
## Negative:

## PC_ 2

## Positive:
## Negative:

## PC_ 3

## Positive:
## Negative:

## PC_ 4

## Positive:
## Negative:

## PC_ 5

## Positive:
## Negative:

CST3, TYROBP, LST1, AIF1, FTL
MALAT1, LTB, IL32, IL7R, CD2

CD79A, MS4A1, TCL1A, HLA-DQA1l, HLA-DQB1
NKG7, PRF1, CST7, GZMB, GZMA

HLA-DQA1, CD79A, CD79B, HLA-DQB1, HLA-DPB1
PPBP, PF4, SDPR, SPARC, GNG11

HLA-DQA1, CD79B, CD79A, MS4Al, HLA-DQB1
VIM, IL7R, S100A6, IL32, S100A8

GZMB, NKG7, S100A8, FGFBP2, GNLY Dlegg
LTB, IL7R, CKB, VIM, MS4A7 1 Translational
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Preprocessing: Identify data dimensionality

© How many PCs should we keep for
downstream clustering analysis? More
PCs explain more variance, but compute
becomes more of a barrier.

1000)]
o
N

© Jackstraw procedure implemented in
Seurat, to determine statistically
significant PCs. E.g. compare observe
to a null distribution created from
permuting a subset of the data.

~—

Theoreticai [runif
o
(=)

© Here we would choose the top 10-12 PCs

0.0 1

0.3 1

PC: p-va
PC1:
PC 2:
PC 3:
PC 4:
PC5:
PC6:
PC7:
PC 8:
PC9:

0.025 0.050
Empirical
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PC 10:
PC 11:
PC 12:
PC 13:
PC 14:
PC 15:

lue

9.12e-16
1.47e-11
1.98e-33
9.49e-58
5.05e-56
2.76e-55
9.76e-23
1.48e-11
5.22e-12
6.33e-C
3.75e-C
0.0001
0.0043
0.133

0.479



Clustering

© Graph-based clustering, based on nearest N neighbors in PC space. In this example, we use 10 PCs, so
the neighbors are computed in 10-dimensional space.

© Common misconception... clusters are NOT computed from the UMAP coordinates. UMAP is mostly
used for visualization, and clusters often, but not always, can be seen in the UMAP plots.

© Resolution parameter: tune based on expected biology.

pbmc <- FindNeighbors(pbmc, dims = 1:10)
pbmc <- FindClusters(pbmc, resolution = 0.5)

## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

##

## Number of nodes: 2638

## Number of edges: 95927

el

## Running Louvain algorithm...

## Maximum modularity in 1@ random starts: 0.8728

## Number of communities: 9 CENTER FOR
COMPUTATIONAL
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Clustering: modularity optimization with Louvain

oAij represents the edge weight between nodes % and j;
ek; and k; are the sum of the weights of the edges attached to

1 k; kj nodes % and j, respectively;
Q == E Aij — — J(Cz , Cj ), em is the sum of all of the edge weights in the graph;
2m ] 2m ec; and c; are the communities of the nodes; and

«4 is Kronecker delta function (d(z,y) = 1if x = y, 0 otherwise).

Zin D tot 3, is the sum of edge weights between nodes within the
Q c — — ( )2 5 community ¢ (each edge is considered twice); and
2m 2m e X, is the sum of all edge weights for nodes within the

community (including edges which link to other communities).
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Non-linear dimensional reduction (UMAP)

# If you haven't installed UMAP, you can do so via reticulate::py_install(packages =

* As mentioned previously, UMAP % “UR TR
Computed independently from pbmc <- RunUMAP(pbmc, dims = 1:10)

CIUSterS' UserI for Vlsuallzatlon' # note that you can set "label = TRUE' or use the LabelClusters function to help label

# individual clusters
DimPlot(pbmc, reduction = "umap")

UMAP_2
AN NN NN NN
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# find markers for every cluster compared to all remaining cells, report only the positive
# ones
pbmc.markers <- FindAllWMarkers(pbmc, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
pbmc.markers %>%
group_by(cluster) %>%
slice_max(n = 2, order_by = avg_log2F(C)

Find cluster-specific
markers

## # A tibble: 18 x 7

## # Groups: cluster [9]
## p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene
: . ## <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <chr>
@ Identlfy genes WhICh ## 1 9.57e- 88 1.36 0.447 0.108 1.31e- 83 0@ CCR7
S|gn|f|cantly Change ## 2 3.75e-112 1.09 0.912 0.592 5.14e-108 @ LDHB
. # 30 5.57 0.996 0.215 0 1 S100A9
between Ce“S In eaCh ## 40 5.48 0.975 0.121 @ 1 S100A8
cluster, and all other ## 5 1.06e- 86 1.27 0.981 0.643 1.45e- 82 2 LTB
cells ## 6 2.97e- 58 1.23 0.42 0.111 4.07e- 54 2 AQP3
* ## 70 4.31 0.936 0.041 0 3 CD79A
## 8 9.48e-271 3.59 0.622 0.022 1.30e-266 3 TCL1A
## 9 5.61le-202 3.10 0.983 0.234 7.70e-198 4 CCL5
## 10 7.25e-165 3.00 0.577 0.055 9.95e-161 4 GZMK
## 11 3.51e-184 3.31 0.975 0.134 4.82e-180 5 FCGR3A
## 12 2.03e-125 3.09 1 0.315 2.78e-121 5 LST1
## 13 3.13e-191 5.32 0.961 0.131 4.30e-187 6 GNLY
## 14 7.95e-269 4.83 0.961 0.068 1.09e-264 6 GZMB
## 15 1.48e-220 3.87 0.812 0.011 2.03e-216 7 FCER1A
## 16 1.67e- 21 2.87 1 0.513 2.28e- 17 7 HLA-DPB1
## 17 1.92e-102 8.59 1 0.024 2.63e- 98 8 PPBP
## 18 9.25e-186 7.29 1 0.011 1.27e-181 8 PF4
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Visualization options: violin plots

VinPlot(pbmc, features = c("MS4A1", "CD79A"))

MS4Al

Expression Level
Expression Level

CD79A
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Visualization options: expression UMAP

FeaturePlot(pbmc, features = c("MS4A1", "GNLY", "CD3E", "CD14", "FCER1A", "FCGR3A", "LYZ", "PPBP",

lchsAll) )
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Visualization options: heatmap of top marker genes

pbmc.markers %>%

group_by(cluster) %>%

top_n(n = 10, wt = avg_log2FC) —> topl@
DoHeatmap(pbmc, features = topl@$gene) + NolLegend()
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Identifying cell types from cluster marker genes:
Canonical/known marker genes

Cluster ID Markers

0

IL7R,CCR7
CD14,LYZ
IL7R,S100A4
MS4A1

CD8A

FCGR3A, MS4A7
GNLY, NKG7
FCER1A,CST3

PPBP

Cell Type

Naive CD4+ T
CD14+ Mono
Memory CD4+
B

CD8+T
FCGR3A+ Mono
NK

DC

Platelet

new.cluster.ids <- c("Naive CD4 T", "CD14+ Mono", "Memory CD4 T",
"NK", "DC", "Platelet")

names (new.cluster.ids) <- levels(pbmc)
pbmc <- RenamelIdents(pbmc, new.cluster.ids)
DimPlot(pbmc, reduction = "umap", label = TRUE, pt.size = 0.5) + NolLegend()

=10 -

Platelet

"B", "CD8 T", "FCGR3A+ Mono",

-10

5
UMAP_1
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Identifying cell types from cluster marker genes:
Cross-referencing with cell type databases

PanglaoDB is a database for the scientific community interested in Database tat stics

exploration of single cell RNA sequencing experiments from mouse and -
human. We collect and integrate data from multiple studies and present Mus musculus Homo sapiens
them through a unified framework.
Samples 1063 305
Usage examples
» Run a gene search for SOX2, PECAM1 or ACE2 Tissues @ 184 74
» Browse the full list of samples
« Explore the list of cell type markers for Schwann cells Cells @ 4,459,768 1,126,580
* Browse cell types of the mouse retina
» Look at the expression of CRX in photoreceptor cells Clusters @ 8,651 1,748
* Find cell clusters where both PECAM7T and VCAMT are expressed
using a boolean search with the 'and’ operator
¢ Find quiescent neural stem cells using AND+NOT Dataset of the day :
e AT,
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Automated tools for cell type identification

© Useful for a starting point, but often need to be refined with input from researcher (using
known marker genes for expected cell types, subtypes, etc). Often work best with large,
well-defined cell types (fibroblasts, macrophages, t-cells, etc). Less useful for smaller, more
novel cell subtvpes.

Article | Published: 14 January 2019

Reference-based analysis of lung single-cell sequencing
reveals a transitional profibrotic macrophage

Dvir Aran, Agnieszka P. Looney, Ledi  Article | Open access | Published: 10 March 2022

et B EEEE Fully-automated and ultra-fast cell-type identification
reusimanssar 2 57 ysing specific marker combinations from single-cell
transcriptomic data

Aleksandr lanevski, Anil K. Giri & & Tero Aittokallio &3

Nature Communications 13, Article number: 1246 (2022) | Cite this article
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Pseudobulk analysis for identifying differentially expressed
genes by condition, within clusters

Confronting false discoveries in single-cell
differential expression

Jordan W. Squair® 23, Matthieu Gautier® 2, Claudia Kathe ® "2, Mark A. Anderson"?, Nicholas D. James'?,
Thomas H. Hutson 12 Rémi Hudelle12 Taha Qaiser® 3 , Kaya J. E. Matson4, Quentin Barraud*e,/1'2,
Ariel J. Levine® 4, Gloele La Manno!, Michael A. Skinnider @ 256 & Grégoire Courtine® 26

Differential expression analysis in single-cell transcriptomics enables the dissection of cell- CD4 Naive T Cells CD14 Monocytes
type-specific responses to perturbations such as disease, trauma, or experimental manip- .
ulations. While many statistical methods are available to identify differentially expressed 6 . ,/SG15
genes, the principles that distinguish these methods and their performance remain unclear. * 61 CXCL10 ®e
Here, we show that the relative performance of these methods is contingent on their ability to . cCLs .
account for variation between biological replicates. Methods that ignore this inevitable var- 1SG15 "58 /8620 .« .°
iation are biased and prone to false discoveries. Indeed, the most widely used methods can - 41 ° ,15G20 ‘ d' = 4 ';rl LY6E o o *
discover hundreds of differentially expressed genes in the absence of biological differences. = '1”:'6 = 613 |F|§ . ¢
g R 2 g : : ) IBIT o«—LY6E . wn ¢
To exemplify these principles, we exposed true and false discoveries of differentially VX1 e o
expressed genes in the injured mouse spinal cord. > ¢|p§-|-2° 5]
> aggregate counts to sample level o . i
0 2 4 6 0 2 4 6
CTRL CTRL

before running comparison to control
false discoveries UCSan Diego N CENTER FOR
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Pathway analysis

Investigate enrichment of cluster
marker genes with predefined
pathways/biological processes/
gene sets

Common tools:
gprofiler
toppgene
GSEA
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Pseudotime analysis with slingshot

* |dentify lineages and branch points

e HBC
Transitioning HBC
GBC
Immature OSN

® Mature OSN
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® Microvillous

™
&

Street, Kelly, et al. "Slingshot: cell lineage and pseudotime inference for single-cell
transcriptomics." BMC genomics 19.1 (2018): 1-16.

Detailed usage instructions here: UC San Dlegg

https://bioconductor.org/packages/devel/bioc/vignettes/slingshot/inst/doc/vignette.htritman Clinical and Translational
Research Institute
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Estimating regulon activity with pyscenic

Co-expression Motif & Track discovery Cell scoring Clustering
a Tool: GENIE3 / GRNBoost b Tool: RcisTarget c Tool: AUCell d Tool: t-SNE / Hierarchical clustering / ...
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Thank youl!

Now on to the interactive part!
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